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Prediction of Shear Viscosity and Non-Newtonian 
Behavior in the Soft-Sphere Liquid 1 

H. J. M. Hanley,  2 J. C. Rainwater,:  and M. L. Huber 2 

We show that a shear rate-dependent viscosity coefficient, normal pressure dif- 
ferences, and shear dilatancy can be predicted in a soft-sphere liquid given only 
the equilibrium radial distribution function and a relaxation time. Calculations 
are made using the relaxation-time theory of Hess and Hanley, and the results 
are compared with simulation data from nonequilibrium molecular dynamics. 
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1. I N T R O D U C T I O N  

One would like to construct  a consistent theory  to predict bo th  the ther- 
m o d y n a m i c  and the t ranspor t  propert ies  of a liquid. In principle, there is 
no difficulty. The t he rmodynamic  and t ranspor t  propert ies  are connected 
th rough  the pressure tensor, P. The  hydrosta t ic  pressure (p)  is 
p = ( t /3 )  TrP, and the viscosity coefficient (t/) is related to the off-diagonal 
elements of  P, for example,  Pxy = - t /y ,  where 7 is the shear rate imposed  
on the liquid. In practice, however,  a consistent microscopic  theory has 
been limited to the dilute [1 ]  and the modera te ly  dense [2-] gas. (We 
exclude ad hoc p rocedures - - such  as variants  of the Enskog theory  [3 ]  and 
corresponding states [ 4 ] - - t h a t  m a y  use equil ibrium propert ies  as input.)  
Here,  however,  we p ropose  a simple theory for a dense liquid of spherical 
particles tha t  is based  on the dis tor t ion of the pair  correlat ion function. 

i Paper presented at the Tenth Symposium on Thermophysical Properties, June 20-23, 1988, 
Gaithersburg, Maryland, U.S.A. 

2Thermophysics Division, National Institute of Standards and Technology (formerly 
National Bureau of Standards), Boulder, Colorado 80303, U.S.A. 

1041 

0195-928X/88/1100-1041$06.00/0 �9 1988 Plenum Publishing Corporation 



1042 Hanley, Rainwater, and Huber 

The concept of a distorted correlation function is not new; it goes back 
to Maxwell, in fact, and even earlier. One can argue that the structure of a 
fluid subjected to a strain rate is identical to the structure of a glass under a 
strain ZT, where ~ is a relaxation time. In the special case of Couette flow, 
the velocity gradient tensor, 7, is Veyex, where the ei are unit vectors. Sup- 
pose that a particle in the fluid at r is shifted on deformation to r - Z T .  r; 
the pair distribution function, g(r, 7), is to linear order in the velocity 
gradient 

g(r, 7) = geq( r - z7' r) 

= geq(r)-  v7-r-(dg~q/dr) (1) 

where g~q(r) is the equilibrium radial distribution function. 
Expressions for the energy and pressure of the system with geq(r) are 

standard: 

E~ = 2zcp f r2(~geq(r) dr (2) 

2~p 2 
p~ = - - - - ~  f r3(/g~q(r) dr (3) 

where ~b is the intermolecular pair potential and pairwise additivity of the 
potential is assumed. The ~b subscript denotes the potential contribution to 
the properties, and p is the density, N/V. The analogous expression for the 
viscosity [-5] is 

2rip 2 
- 15 f r3~'zTr(dg~q/dr) dr (4) qO7 

The specific objective of this paper is to introduce a generalization of 
Eq. (1) and to discuss the prediction of the expansion coefficients through 
the relaxation-time theory of Hess [6] and Hess and Hanley [7, 8]. 
The equilibrium properties and the viscosity coefficient follow from 
generalizations of Eqs.(2)-(4). The calculations are supported by 
simulation data from nonequilibrium molecular dynamics (NEMD) for the 
soft-sphere model [8]. The approach is not unique to the soft sphere; the 
soft sphere is a convenient model and the necessary simulation data are 
readily available. 

Our calculations allow for the model to be non-Newtonian; for exam- 
ple, we show that the viscosity coefficient is a function of the imposed 
shear, that the liquid i s shear dilatant, and that normal pressure differences 
in the sheared liquid are predicted. These results are upheld by the NEMD 
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data. We have commented at length on the apparently surprising con- 
clusion that the simplest liquid can display rheological features usually 
associated only with very complex molecules [9]. 

2. THEORY 

For simplicity let us consider a fluid subjected to planar Couette flow 
with an imposed shear rate 7 = dux/dy, where u is the streaming velocity. A 
spherical harmonic or Cartesian tensor expansion of the pair correlation 
function is 

g(r, 7 )=  gs(r, 7 ) + ~  ~ g(kt)( r, 7) X(kt)(f) (5) 
k l 

where f = r/r. Written out to tensor rank two, the expansion is 

g(r, 7) = gs(r, 7) + g(o2)(7) X(o 2) + g~2)(~) X~2) + g(2)(])) X(2) (6) 

If )~, )), and 2 are the components of f, we have 

X~ 2) = (2 2 - ))2)/2 (7) 

In the simplified theory of Eq. (1), only the term g(22)= -z7r(dgeq/dr ) 
is present to leading order. Note, however, that the coefficients of Eq. (6) 
are, in general, shear rate dependent, that the equilibrium radial dis- 
tribution function is replaced by the spherical contribution, gs(r, 7), and 
that higher-order terms exist in the general expansion. 

The expansion is written out to tensor rank four in Ref. 8 and to 
higher order for a two-dimensional system in Ref. 10. Formal definitions of 
the expansion coefficients are also given in those references. 

2.1. The Relaxation-Time Expressions for the Expansion Coefficients [ 5 - 8 ]  

Our approach rests on the calculation of the coefficients of Eq. (6) 
through the relaxation-time theory that is discussed in full in Ref. 8. In 
summary, the pair correlation function is taken to obey the 
Kirkwood Smoluchowski kinetic equation. In the case of Couette flow, the 
equation is 

8g 8g 
+ n ( g )  = 0 (8) 
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Here 12 is a diffusion-like operator with the property that ff~(geq)=0. 
Equation (8) has been solved with the full operator for the special case of 
the weak potential liquid by Rainwater and Hess [ 11 ], but in general it is 
approximated by a relaxation-time assumption, 

"Q(gk) = "c - lg  k 

O ( g s ) = Z - a ( g s - -  g~q) 
(9) 

If one inserts the expansion Eq. (6) into Eq. (8) and disregards tensorial 
contributions above a certain rank (rank 6 in Ref. 8, for example), it can be 
shown that, in the stationary state, to zero order in 3, 

to first order, 

gs = g~q (10) 

g~2) = - r 7  rdgffdr (11 ) 

and to second order, 

g~ = g~q(r)-  (1/15) zy[rd/dr+ 3] g~) (12) 

g]2) = z~g~2) (13) 

g~o z) = (1/7)z7[rd/dr+ 3/2] g~2) (14) 

g(o 4) = - (~)  z7[rd/dr - 23 g~2) (15) 

g~4) = (�89 r7[rd/dr - 2] g[2) (16) 

In this work we neglect the higher-order g~4) terms (k = 1, 2, or 4). In this 
paper we have further assumed that the relaxation time is identical to all 
orders; see Ref. 8. 

2.2. Summary and Estimation of the Relaxation Time 

Our consistent theory is now complete if we rewrite 
Eq. (2 )~and  Eq. (4) in the more general forms, 

272p 2 
- 3 f r3(ygs( r, 7) dr P~ 

2~zp 2 
f r3~'g~2)( r, 7) dr 

where g~ and g~21 are given by Eqs. (12) and (11), respectively. 

Eq. (3)--or  

(3a) 

(4a) 
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There is a final formal approximation to be made. The expansion coef- 
ficients are, in principle, 7-dependent. We introduce this dependence 
through the relaxation time using an expression based on the approximate 
solution of the Kirkwood-Smoluchowski equation for the pressure tensor 
[12]: 

z = %[1 - (�89 1/2] (17) 

where t0 is the relaxation time at zero shear. 

3. CALCULATIONS AND COMPARISON WITH NEMD 

We report some calculations for the soft-sphere liquid. As remarked, 
the theory is applicable to any fluid of spherical molecules. Soft spheres are 
particularly convenient to consider because the theory can be compared 
with a large body of NEMD results for the viscosity, the pressure, normal 
pressure differences, and the coefficients of expansion (6) [8, 13]. The 
majority of the NEMD calculations in the literature simulate Couette flow 
of the 1/r 12 liquid at a density p = 0.7, which is about 7 of the freezing den- 
sity. Accordingly we also work at that density. All variables are reduced 
with the mass, energy, and length parameters set equal to one. Com- 
putational details are not given. See Ref. 14 for a full description of the 
NEMD procedure. Estimations of expansion coefficients are discussed in 
Refs. 8 and 10. 

3.1. Relaxation Time 

The relaxation time is the key parameter of the theory and a con- 
venient choice for Zo is the Maxwell relaxation time defined as q/G, where 
G is the shear modulus which is proportional to the pressure for the soft 
sphere. We would like to be able to predict %, that is, not require either the 
viscosity or the pressure as input. In fact, we have demonstrated that the 
Maxwell time of a dense liquid is numerically close to co-1, where e) is the 
Einstein frequency [7, 12, 15]. The Einstein frequency is the frequency at 
which a single particle would vibrate if the others were held fixed in their 
lattice positions. Thus we define %=2/~o. The frequency has been 
evaluated by several authors [15, 16] and gives to = 0.24 for the soft sphere 
at a density of 0.7. This value of % is used here. 

3.2. The Equilibrium Radial Distribution Function 

The radial distribution function is known for simple model liquids. It 
is perhaps most straightforward to evaluate it directly from simulation but 
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geq(r) can be calculated by solving the Ornstein-Zernike integral equation 
subject to a particular closure, such as the Percus-Yevick (PY) or the 
hypernetted chain (HNC) approximation. It is well known that an 
approximation for geq(r) can lead to inconsistencies in a subsequent 
evaluation of the thermodynamic properties of the liquid [ 17 ]. Hutchinson 
and Conkie [18] showed, however, that the Percus-Yevick and the hyper- 
netted chain estimations for the function bracket the exact computer 
simulation results for purely repulsive potentials. Accordingly, they--and 
Rogers and Young [19]--mixed the PY and HNC approximations to 
obtain thermodynamic consistency. To predict fluid properties, we 
therefore use the equilibrium g~q(r) of Rogers and Young with our theory. 

3.3. Prediction of the Expansion Coefficients 

First and second order expansion coefficients were evaluated from 
Eqs. (11)-(16) for the soft-sphere liquid at a density of 0.7. Typical results 
are shown for 7 = 1.0 in Figs. 1 and 2. Figure 1 displays the g[:) coefficient 
and compares it with the NEMD simulation [8]. Apart from the fact that 
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Fig. 1. Plot of the first-order expansion coefficient, 
Eq. (11), for the soft-sphere liquid at p = 0 . 7  and 7=  1.0. 
The curve is predicted from the relaxation-time theory 
using Eq.(17) with %=0.24.  The points are from the 
NEMD simulation [8]. In this and subsequent figures, all 
variables are reduced. The reduction mass, energy, and 
length parameters are set equal to one. 
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Fig. 2. Plots of the second-order expansion coefficients, 
Eqs.(13)-(16), from the theory compared to simulation 
(points). Reduced units~ 

the simulation coefficient damps faster at the higher values of r, the 
agreement is excellent. 

Second-order coefficients are shown in Fig. 2. The theory is acceptable 
with the exception that g]2) and g~o 4) are out of phase at large r. [We should 
note, however, that the agreement between theory and simulation for the 
g~o 4) is not good even if we use in Eq. (15) g~2) and ~ estimated directly from 
the simulation itself.] Considering that the curves are entirely predictive, 
the agreement overall is very satisfactory. 

3.4. Prediction of the Viscosity and the Pressure 

On substitution of Eq. (11) into Eq. (4a) with Eq. (17), we obtain 

r / r  = r / o i l  - -  A71/2] (18)  

where A 1 1/2 = (~)(~z0) and t/o is given by Eq. (4) with to substituted for r. 
Figure 3 is a plot of the total viscosity, i.e., t/r plus the dilute-gas con- 
tribution (0.068), verses the shear rate. The results from the theory are 
shown as the solid curve and the N E M D  results, as represented by 
Eqs. (46) and (47) of Ref. 20, are shown as the dashed curve. The 
agreement is very good. We estimate by integration that qo = 1.01. Com- 
pare with the 1.10 from Ref. 20. The 71/2 dependence of the viscosity from 
Eq. (18), introduced by Eq. (17), is the dependence observed from NEMD. 
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Fig. 3. The viscosity, r/, of the soft sphere at a density of 
0.7 calculated from Eq. (18) (solid curve) plotted versus the 
shear rate. Note the 71/2 dependence. The dashed curve is 
the N E M D  result as represented by the equations in 
Ref. 20. Reduced units. 
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Fig. 4. The pressure, p, evaluated from Eq. (20) plotted 
versus the shear rate (solid curve). The dashed curve is the 
NEMD result as represented by the equations in Ref. 20. 
Reduced units. 
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The pressure is evaluated from Eq. (3a) using Eqs. (10) and (12). As 
expected the calculated equilibrium total pressure, peq=2.325, is in 
excellent agreement with the simulated value of 2.379 from Ref. 20. Of more 
interest is the shear rate behavior. From Eqs. (3a), (10), and (12) we can 
easily show that 

P(7)  = Peq -k- 4r/e vy 2 (19) 

for the inverse 12 soft-sphere model. On substitution for t/07 and z we get 

P = Peq + 4r/0Z0172 -- 2A75/2 + A273 ] (20) 

The pressure from Eq. (20) is plotted in Fig. 4 and compared to the 
NEMD simulation data represented by Eqs. (44) and (45) of Ref. 20. The 
comparison is good numerically, but the 7 dependence from Eq. (20) is not 
the NEMD observation of 73/2. 

4. CONCLUSIONS 

We have introduced a straightforward procedure to predict the 
viscosity of a dense simple liquid by predicting the expansion coefficients of 
the pair correlation function under shear. The theory goes beyond the 
usual approaches to transport phenomena because we have a procedure 
that is consistent with the thermodynamic properties of the liquid. 
Moreover, our approach allows for the liquid to have non-Newtonian 
features such as a shear-dependent viscosity and a shear-dependent 
pressure (shear ditatancy). The theory needs as input only a relaxation time 
and a representation of the equilibrium radial distribution function. 

This work has been based on the soft-sphere fluid but applies in 
principle to any liquid of spherical particles. Furthermore, we could scale 
our results to apply to a real liquid if necessary. Thus the theory is a 
predictive theory for all simple liquids and could be expected to give a 
viscosity to within 20 %, say, of the experimental value. 

We should remark that the approach is apparently simple because all 
the difficulties of transport theory have been hidden in the relaxation time, 
r, and in the relaxation approximation of Eq. (9). Further, the theory is 
essentially a dense-liquid theory because we have estimated the relaxation 
time from the Einstein frequency, which is a property of the solid. This 
limitation could be removed, however. The relaxation time is roughly 
proportional to the viscosity through the Maxwell definition. In turn, 
the viscosity is roughly proportional to exp(p). Hence, r could be 
approximated by an exponential expression. 
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Nevertheless ,  the a p p r o a c h  is s imilar  in spiri t  to the simplified version 
of di lute-gas kinet ic  theory  in which the Bo l t zmann  ope ra to r  is 
a p p r o x i m a t e d  by a re laxa t ion  t ime [21]  (a l though  in this work,  of course,  
the re laxa t ion  t ime represents  a po ten t ia l  or  col l is ional  transfer,  ra ther  than  
a kinetic,  re laxa t ion)  and  the a p p r o x i m a t i o n  does al low one an overview of 
t r anspor t  in l iquids wi thout  having to solve equat ions  with compl ica ted  

coll ision opera tors .  
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